smart engineering - Industrie 4.0 aus einer Hand
Home> Smart Industry> Smart Materials & Products> Werkstoffe>

Fertigungstechnik - Engineering; Produktentstehungsprozess; Projektmanagement

FertigungstechnikWerkstoffe mit Erinnerungsvermögen

Regelmäßig entdecken Chemiker, Physiker oder Materialwissenschaftler innovative Eigenschaften bestehender oder neu kombinierter Materialien. Oft können diese in der Praxis umfangreich genutzt werden und bestehende Mechanismen verbessern oder gar substituieren. So haben etwa Schwingquarze mechanische Uhrwerke ersetzt oder Halbleiter die Röhrenelektronik verdrängt. Ähnliches Potenzial steckt in Formgedächtnislegierungen. In der Medizintechnik ist das Material schon nicht mehr wegzudenken, und für die Automobilindustrie entwickeln unter anderem csi-Ingenieure gemeinsam mit Partnern interessante Lösungen.

sep
sep
sep
sep
Formgedächtnislegierungen

Formgedächtnislegierungen – kurz FGL – sind Metalle wie beispielsweise Nitinol (Nickel-Titan), die sich nach einer Deformation an ihre ursprüngliche Form „erinnern“ und diese nach einem Energieeintrag wieder einnehmen können. Diese Eigenschaft wird als Formgedächtniseffekt bezeichnet und lässt sich nicht nur in Metalllegierungen beobachten sondern auch in Polymeren und Keramiken. Dabei unterscheidet man laut csi-Technologieexperte Daniel Gruner grundsätzlich drei Effekte: den 1-Weg-, 2-Wege- und Superelastizitäts-Effekt. Der Ingenieur erklärt: „Das Material lässt sich im kalten Zustand bis zu einer Dehnung von rund acht Prozent pseudoplastisch verformen.

Anzeige

Pseudoplastisch heißt, dass die Metallatome nicht diffundieren, sondern auf ihren Gitterplätzen bleiben und das Gitter lediglich umklappt. In welche Form das Material gebracht wird, ist beliebig. Erhitzt man die verformte FGL über ihre Umwandlungstemperatur, werden die Gitter der Legierung angeregt, in ihre antrainierte Grundform zurückzuklappen. Die FGL nimmt ihre ursprüngliche Form wieder ein.“ Dieses Verhalten wird auch 1-Weg-Effekt genannt. Nutzbar wird die Rückverformung allerdings erst, wenn mit ihr eine Kraft erzeugt werden kann. Je größer die pseudoplastische Verformung und je mehr das Material daran gehindert wird, seine ursprüngliche Form einzunehmen, desto höher ist die Kraft, welche aus der Bewegung gewonnen werden kann.

Der sogenannte 2-Wege-Effekt gleicht dem 1-Weg-Effekt mit dem Unterschied, dass das Material im kalten Zustand eine Vorzugsform besitzt. Wird die FGL aus ihrer Vorzugsform heraus erhitzt, klappen die Gitter in ihre eigentliche Grundform um. Kühlt das Material danach unbelastet ab, nimmt es seine Vorzugsform wieder ein. Nutzbar ist allerdings nur die Rückverformung in die eigentliche Grundform. Im kalten Zustand ist das Material aufgrund seiner Pseudoplastizität zu leicht verformbar, um nutzbare Kräfte erzeugen zu können.

Weiterentwicklung von Formgedächtnislegierungen

Bei welcher Temperatur die Rückverformung stattfinden soll, lässt sich maßgeblich durch die Legierungszusammensetzung beeinflussen. Je höher der Nickelanteil, desto niedriger die Phasenumwandlungstemperatur. Die Temperatur wird dabei durch elektrischen Strom (Heizwiderstand) oder externe Heizelemente bzw. Heizmedien eingebracht.

Zurück zur Form
Ein weiterer Effekt ist die Pseudoelastizität. Dabei befindet sich die FGL stets über ihrer Umwandlungstemperatur, die auch bei Raumtemperatur liegen kann. Dehnt man das Material über seinen real-elastischen Anteil von etwa 0,2 bis 0,5 Prozent hinaus, klappen die Gitter mit steigender Dehnung immer weiter um. Wird das Material wieder entlastet, schnappen die Gitter gummiartig zurück in ihre Grundform. Dieser Effekt funktioniert bis zu einer Dehnung von zirka sechs Prozent, was die Elastizität konventioneller Metalle bis zum zwanzigfachen übertrifft. Man spricht hier auch von Superelastizität.

In einigen Branchen werden FGL bereits sehr erfolgreich eingesetzt. So nutzt etwa die Medizintechnik die Superelastizität des Materials für sogenannte Stents – medizinische Gefäßstützen – die sich im kalten Zustand zusammenpressen und „minimalinvasiv“ in die betroffenen Blutgefäße implantieren lassen. Am Zielort entfalten sie sich bei Körpertemperatur zur gewünschten Form und halten verengte Blutgefäße (etwa nach einem Herzinfarkt) wieder offen.

Gitterstrukturen

Einsatz in der Automobilindustrie
Auch für die Automobilindustrie sind vorteilhafte Einsätze diverser Formgedächtnislegierungen möglich. Diese zu erschließen, haben sich unter anderem Ingenieure von csi zur Aufgabe gemacht und mit einer Bachelorarbeit näher betrachtet. Christian Bender – mittlerweile festes Mitglied im Team Kinematik am csi-Standort Neckarsulm – führte eine Anwendungsanalyse für den Fahrzeuginnenraum durch und erarbeitete bereits erste konkrete Konzepte.

Daniel Gruner ist heute überzeugt, dass sich mit FGL bestehende Mechanismen vereinfachen und „sich künftig komplett neue Kinematiken realisieren lassen, die bis dato noch nicht denkbar waren.“ Grund ist vor allem die hohe Leistungsdichte des Materials. Ein Draht mit einem Durchmesser von zwei Millimeter und einer Länge von einem Meter könnte ein Gewicht von etwa 100 Kilogramm um 50 Millimeter anheben. Bei einer Drahtmasse von lediglich etwa 20

Gramm ergibt sich eine Leistungsdichte von 2326 W/kg. Im Vergleich dazu: Ein herkömmlicher Hubmagnet mit einem Hub von 50 Millimeter und einer Hubkraft von 450 Newton wiegt mit etwa 30,5 Kilogramm das 1.500-fache des FGL-Drahts und hat somit eine Leistungsdichte von lediglich rund 0,74 W/kg.

Praxisbeispiele
Formgedächtnisaktoren sind vor allem für geräuschlose Bewegungen mit begrenzten Stellwegen im Bereich von bis zu 16 Millimeter bei einem 200 Millimeter langen Zugdraht ohne Kraft- oder Wegübersetzungen geeignet. Die Stellkräfte und Stellwege können durch die Halbzeugform und das Wirkprinzip (Zug, Druck, Torsion, Schub und Biegung) maßgeblich beeinflusst werden. Auch hierzu ein Beispiel: Eine Schraubenzugfeder mit 20 Windungen, einem Drahtdurchmesser von 0,8 Millimeter und einem mittleren Windungsdurchmesser von fünf Millimeter kann ohne Probleme auf etwa 120 Millimeter ausgezogen werden und somit einen Stellweg von circa 100 Millimeter leisten.

Die Vielfalt der Halbzeugformen ist groß. So werden neben Drähten und Drahterzeugnissen (Stents, Drahtfedern etc.) auch Bleche und Hülsen angewendet. Außerdem kann das Material 3D-gedruckt werden. Allen Formen ist gemein, dass der Bauraum – bei intelligenter Gestaltung der Kinematik – meist lediglich so groß ist wie der Formgedächtnisaktor selbst. Alles in allem sind somit extrem leistungsfähige, kompakte und leichte wie auch geräuschlose Kinematiken möglich.

csi hat inzwischen ein Konzeptergebnis der Bachelorarbeit weiter forciert. Dabei handelt es sich um ein Folien-Oled-Display, kurz Foled, welches durch eine, auf dem 1-Weg-Effekt basierende FGL-Kinematik ausgerollt wird. Das Display könnte beispielsweise unter der Instrumententafel-Oberseite positioniert werden. Um die Anforderungen und technischen Machbarkeiten moderner Oled-Displays kennenzulernen, wurde zeitgleich zur FGL-Bachelorarbeit eine Abschlussarbeit zur Foled-Technologie durchgeführt. „Somit konnten in dem forcierten Konzept gleich zwei neue Technologien betrachtet werden“, ergänzt Daniel Gruner zum Projekt.

Das Projekt ist aus dem Technologie-Team hervorgegangen und hat schnell Unterstützung durch Hannes Rogl, Leiter des Kinematik- und Mechatronik-Teams am Standort Neckarsulm gefunden. Die ersten 3D-Daten waren dank tatkräftiger Unterstützung von Sven Kübler aus dem Interieur-Team schnell erstellt. Das Wirkprinzip der geplanten FGL-Kinematik zeigte nach näherer theoretischer Betrachtung und praktischen Versuchen zwar noch Schwächen. Die Abstimmung mit den FGL-Spezialisten der Ingpuls GmbH aus Bochum half jedoch, schnell eine funktionierende Alternative zu finden: Eine Schraubenzugfeder aus FGL wird durch zwei herkömmliche Schenkelfedern auseinandergezogen und um die Displayrolle gelegt. Beim Erhitzen der Feder zieht sich diese zusammen und dreht die Rolle aus eigener Kraft zurück. Dabei rollt sich das Foled-Display von der Rolle ab. Während die ersten beiden Funktionsmuster im eigenen csi-3D-Drucker hergestellt wurden, unterstützte die Firma OHP GmbH aus Weilburg die Fertigung des ersten Systemprototyps. Somit ist das erste Etappenziel geschafft.

Jetzt geht es um die Optimierung des Konzepts. Daniel Gruner dazu: „Wir haben inzwischen die FGL-Feder so ausgelegt und validiert, dass sie den definierten Stellweg erreicht. Zusätzlich arbeitet aktuell einer unserer Bacheloranden an der Steuerung und Regelung der FGL-Aktoren. Im Rahmen der Abschlussarbeit bauen wir auch einen Prüfstand auf, mit dem wir über die Zeit Stellweg, Stellkraft und den elektrischen Widerstand aufzeichnen können. Wir lernen also stetig mehr über den Werkstoff und machen große Fortschritte.“ -sg-

Wolfgang Klingauf, Augsburg

csi entwicklungstechnik, Neckarsulm, Tel. 07132/9326-0, http://www.csi-online.de

Diesen Artikel …
sep
sep
sep
sep
sep

Weitere Beiträge in dieser Rubrik

Smart Material: Vorausschauender Stoff

Smart MaterialVorausschauender Stoff

Tribo-Polymere mit hoher Lebensdauer treffen auf die Vorteile digitaler Kommunikation, gerade im Bereich der vorausschauenden Wartung. Ein Beispiel sind die neuen Smart Plastics von Igus, darunter die intelligente Drylin-Linearführung.

…mehr
Roboter: Kuka in der Kunstoffindustrie

RoboterKuka in der Kunstoffindustrie

Auch außergewöhnliche Dimensionen sind kein Problem: Bei Asset International in Südwales entlastet ein Roboter samt Lineareinheit und externer Drehachse die Mitarbeiter bei schweren Fräsarbeiten an Großrohren aus Kunststoff.

…mehr
MI-Enterprise Connect für Teamcenter

WerkstoffeWerkstoffinformationen in Teamcenter

Das Integrationsmodul MI-Enterprise Connect for Teamcenter ermöglicht es Unternehmen, aus ihrer Granta-MI-Implementierung Übersichtskataloge von Werkstoffen zu definieren, mit der PDM-Software Teamcenter automatische Synchronisierungen durchzuführen.

…mehr
Kunststoffe mit hoher Wärmeleitfähigkeit

Spezial-KunststoffeKunststoffen die Wärmeleitfähigkeit beibringen

Eine Reihe neu entwickelter Hochleistungsgraphiten zur Verbesserung der Wärmeleitfähigkeit in Kunststoffen soll bei weitgehender Erhaltung der mechanischen Eigenschaften Leitfähigkeiten über 20 W/mK ermöglichen.

…mehr
Polycarbonat Filament

WerkstoffeFür hohe Temperaturen geeignet

Aufgrund der hohen Nachfrage nach Temperaturbeständigen Materialien bietet German Reprap nun auch das Polycarbonat-Filament an. Druck-Objekte aus Polycarbonat sind bis zu 112°C temperaturstabil.

…mehr
Anzeige
Anzeige

Anzeige - Highlight der Woche

COSCOM Digital-PROZESS Meetings

Einladung zu COSCOM Digital-PROZESS Meetings

Mehr Profit vor dem Span! COSCOM connected …

… Manufacturing: CNC-Prozesse optimieren!

… Tool-Management: Rüstprozesse beschleunigen!

… Prozess-Management: Durchgängige Daten bis an die Maschine!

Aktuelle Termine und Orte hier

Anzeige - Highlight der Woche

Aras Whitepaper: Internet of Things - Kontext statt Chaos


Hier stellt Ihnen das Unternehmen Aras das Highlight der Woche vor.

White Paper jetzt kostenlos herunterladen!

Mediadaten 2018

Anzeige

White Papers auf smart engineering


In unserer neuen White Paper Sektion finden Sie lösungsorientierte White Paper unserer Partner zu IT-Standards, Anwendungshinweisen, Leistungsübersichten uvm. Jetzt kostenfrei downloaden.

Künstliche Intelligenz: Forschungsroboter “Roboy“ und Martina Mara

Video- Künstliche Intelligenz: Forschungsroboter “Roboy“ und Martina Mara


Welche Wirkung hat der Anblick von Robotern auf Menschen? Mit dieser Frage befasst sich das Team um Professor Markus Appel vom Campus Landau in einem aktuellen Forschungsprojekt. Mit ihrer Studien wollen die Forscher herausfinden, inwieweit wir Menschen künstliche Intelligenz als helfende Hand im Alltag akzeptieren oder ablehnen.

smart engineering in Social Networks

smart engineering Newsletter

smart engineering Newsletter kostenfrei abonnieren

Unser Newsletter informiert Sie über die wichtigsten Neuigkeiten, Produktentwicklungen und Trends aus der Branche. Jetzt kostenlos registrieren.

SCOPE Newsticker